Kamis, 10 Februari 2022

OBJEK IPA DAN PENGAMATANNYA




 

A. Penyelidikan IPA

Tanpa kita sadari sebenarnya sejak kecil diam-diam kita sering mengamati pertumbuhan dan perkembangan teman sebayamu, mulai dari bentuk tubuh temanmu, yang mana temanmu ada yang memiliki tubuh sangat tinggi, badan yang besar, atau mungkin ada temanmu yang pendek. Kemudian warna rambut hitam, kulit cokelat, hidung mancung, mata sipit, dan lain-lain. Dengan hasil pengamatan ini, berbagai pertanyaan lainnya akan muncul. Misalnya berapakah tinggi badannya? Berapakah massa tubuhnya? Dengan demikian, kamu perlu melakukan penyelidikan lebih lanjut, sehingga akan memperoleh pemahaman yang lebih lengkap tentang temanmu tersebut. Dengan cara inilah IPA akan berkembang. Lakukan kegiatan berikut untuk memahami bagaimana cara mengembangkan Ilmu Pengetahuan Alam (IPA).
Penyelidikan ilmiah IPA melibatkan sejumlah proses yang harus dikuasai, antara lain seperti berikut.
1. Pengamatan 
Menggunakan pancaindra, termasuk melakukan pengukuran dengan alat ukur yang sesuai. Pengamatan dilakukan untuk mengumpulkan data dan informasi. 
2. Membuat Inferensi 
Merumuskan penjelasan berdasarkan pengamatan. Penjelasan ini digunakan untuk menemukan pola-pola atau hubungan antaraspek yang diamati dan membuat perkiraan. 
3. Mengomunikasikan 
Mengomunikasikan hasil penyelidikan baik lisan maupun tulisan. Hal yang dikomunikasikan termasuk data yang disajikan dalam bentuk tabel, grafik, bagan, dan gambar yang relevan.

Keterampilan melakukan pengamatan dan mencoba menemukan hubungan- hubungan yang diamati secara sistematis seperti yang telah kamu lakukan sangatlah  penting. Dengan  keterampilan ini, kamu dapat mengetahui bagaimana mengumpulkan fakta dan  menghubungkan fakta-fakta untuk  membuat suatu penafsiran  atau  kesimpulan.  Keterampilan  ini  juga  merupakan   keterampilan belajar sepanjang hayat  yang dapat  digunakan  bukan  saja untuk  mempelajari berbagai macam ilmu, tetapi juga dapat digunakan  dalam kehidupan  sehari-hari. 

Objek yang dipelajari dalam IPA meliputi seluruh benda di alam dengan segala interaksinya untuk dipelajari pola-pola keteraturannya. Objek tersebut dapat berupa benda yang sangat kecil (renik), misalnya bakteri, virus, bahkan partikel-partikel penyusun atom, juga dapat berupa benda-benda  yang berukuran sangat besar, misalnya lautan, bumi, matahari hingga jagat raya ini.

B. Pengukuran sebagai Bagian dari Pengamatan

Pengamatan objek dengan menggunakan indra merupakan kegiatan yang penting untuk menghasilkan deskripsi suatu benda. Akan tetapi, seringkali pengamatan seperti itu tidak cukup. Kamu memerlukan pengamatan yang memberikan hasil yang pasti ketika dikomunikasikan kepada orang lain. Contoh, pernahkah kamu pergi ke penjahit untuk minta dibuatkan baju? Bagaimana penjahit  dapat membuatkan baju dengan ukuran yang tepat? Atau, pernahkah kamu melihat orang berjual beli buah, misalnya duku? Bagaimanakah menentukan banyaknya duku secara akurat? Semua peristiwa di atas terkait dengan kegiatan pengukuran. Pada bagian  ini, kamu akan mendiskusikan  dan  melakukan  berbagai  kegiatan pengukuran dengan menggunakan alat ukur yang sesuai.

1. Pengukuran
Mengukur merupakan kegiatan penting dalam kehidupan dan kegiatan  utama di dalam IPA. Contoh, kamu hendak mendeskripsikan suatu benda, misalnya mendeskripsikan dirimu. Kemungkinan besar kamu akan menyertakan tinggi badan, umur, massa tubuh, dan lainlain. Tinggi badan, umur, dan massa tubuh merupakan sesuatu yang dapat diukur. Segala sesuatu yang dapat diukur disebut besaran. Seperti yang telah kamu lakukan, mengukur merupakan kegiatan membandingkan suatu besaran yang diukur dengan besaran sejenis yang dipakai sebagai satuan. Misalnya, kamu melakukan pengukuran panjang meja dengan jengkalmu. Dengan demikian, kamu harus membandingkan panjang meja dengan panjang jengkal-mu. Jengkalmu digunakan sebagai satuan pengukuran. Misalnya, hasil pengukurannya yaitu panjang meja sama dengan 6 jengkal. Diperlukan satuan yang disepakati  bersama untuk semua orang. Satuan yang disepakati ini disebut satuan baku dalam Sistem Internasional (SI). Setelah tahun 1700, sekelompok ilmuwan menggunakan sistem ukuran yang dikenal dengan nama Sistem Metrik. Pada tahun 1960, Sistem Metrik dipergunakan dan diresmikan sebagai Sistem Internasional. Penamaan ini berasal dari bahasa Prancis, Le Systeme Internationale d’Unites. Dalam satuan SI, setiap jenis ukuran memiliki satuan dasar, contohnya panjang memiliki satuan dasar meter. Untuk hasil pengukuran yang lebih besar atau lebih  kecil dari meter, dapat digunakan  awalan-awalan, Penggunaan awalan ini untuk memudahkan dalam berkomunikasi karena angkanya menjadi lebih sederhana. Misalnya, untuk menyebutkan 20.000 meter dapat dipermudah menjadi 20 kilometer. Nilai kelipatan awalan tersebut menjangkau objek yang sangat  kecil hingga objek yang sangat besar. Contoh objek yang sangat kecil adalah atom, molekul, dan virus. Contoh objek yang sangat besar adalah galaksi.

Sistem Internasional lebih mudah digunakan karena disusun berdasarkan kelipatan bilangan 10,  Penggunaan awalan  di depan satuan dasar SI menunjukkan bilangan 10 berpangkat yang dipilih. Misalnya, awalan kilo berarti 103 atau 1.000. Berarti, 1 kilometer berarti 1.000 meter. Contoh lain, pembangkit listrik menghasilkan daya 500 Mwatt yang berarti sama dengan 500.000.000 watt. Jadi, penulisan  awalan menyederhanakan angka hasil pengukuran, sehingga mudah dikomunikasikan ke pihak lain. Pengukuran  yang baik dan tepat memerlukan  alat ukur yang sesuai.

2. Besaran Pokok
a. Panjang Dalam IPA, panjang menyatakan jarak antara dua titik. Misalnya, panjang papan  tulis adalah jarak antara titik pada ujung-ujung  papan  tulis, panjang  bayi yang baru lahir adalah jarak dari ujung kaki sampai ujung kepala bayi itu. Mengapa panjang harus diukur, tidak sekadar diperkirakan?
Panjang menggunakan satuan dasar (SI) meter (m). Satu meter standar (baku) sama  dengan jarak yang ditempuh cahaya dalam ruang hampa selama 1/299.792.458 sekon. Untuk keperluan sehari-hari telah dibuat alat-alat pengukur panjang tiruan dari meter standar, seperti terlihat pada Gambar 1.16. Selain meter, panjang juga dinyatakan dalam satuan-satuan yang lebih besar atau lebih kecil dari meter dengan cara menambahkan awalanawalan seperti tercantum dalam Tabel 1.1. Berdasarkan Tabel 1.1 tersebut, maka dapat dikatakan bahwa:
» 1 kilometer (km) = 1.000 meter (m) » 1 sentimeter (cm) = 1/100 meter (m) atau 0,01 m
Sebaliknya, diperoleh » 1 m = 1/1.000 km = 0,001 km » 1 m = 100 cm
Perhatikan Gambar 1.16. Beberapa alat pengukur panjang, misalnya pita ukur atau metlin, penggaris atau mistar, jangka sorong, dan meteran gulung. Meteran gulung dan penggaris mampu mengukur paling kecil hingga 1 mm, tetapi jangka sorong mampu mengukur sampai 0,1 mm. Pernahkah kamu melihat bahwa  alatalat pengukur panjang tersebut dipergunakan dalam pekerjaan? Sebutkan jenis pekerjaan beserta alat ukur panjang yang digunakan.
Dalam melakukan pengukuran, perhatikan posisi nol alat ukur. Untuk pengukuran panjang, ujung awal benda berimpit dengan angka nol pada alat ukur. Selain itu, posisi mata harus tegak lurus dengan skala yang ditunjuk. Hal ini untuk menghindari kesalahan hasil pembacaan pengukuran 
b. Massa
Setiap benda tersusun dari materi. Jumlah materi yang terkandung dalam suatu benda disebut massa benda. Dalam SI, massa diukur dalam satuan kilogram (kg). Misalnya, massa tubuhmu 52 kg, massa seekor kelinci 3 kg, massa sekantong gula 1 kg. Dalam kehidupan sehari-hari, orang menggunakan istilah “berat” untuk massa. Namun sesungguhnya, massa tidak sama dengan berat. Massa suatu benda  ditentukan oleh kandungan materinya  dan tidak mengalami  perubahan meskipun kedudukannya berubah. Sebaliknya, berat  sangat  bergantung pada kedudukan di mana benda tersebut berada. Mengapa? Karena benda akan memiliki gravitasi yang berbeda di tempat yang berbeda. Sebagai contoh, saat astronot berada di bulan, beratnya tinggal 1/6 dari berat dia saat di bumi. Dalam SI, massa menggunakan satuan dasar kilogram (kg), sedangkan berat menggunakan satuan  Newton  (N). Satu kilogram standar  (baku) sama  dengan massa   sebuah   silinder  yang  terbuat  dari  campuran   platinumiridium   yang disimpan di Sevres, Paris, Prancis . Massa 1 kg setara dengan 1 liter air pada suhu 4oC.
NERACA OHAUS



Massa suatu benda dapat diukur dengan  neraca lengan , sedangkan berat diukur dengan neraca pegas . Neraca lengan dan neraca pegas termasuk jenis neraca mekanik. Sekarang banyak digunakan jenis neraca lain yang lebih praktis,  yaitu neraca digital. Pada neraca digital, hasil pengukuran massa langsung dapat diketahui, karena muncul dalam bentuk angka dan satuannya. Selain kilogram (kg), massa benda   juga dinyatakan dalam satuan-satuan lain. Misalnya, gram (g) dan miligram (mg) untuk massa-massa yang kecil; ton (t) dan kuintal (kw) untuk massa-massa yang besar. »      1 ton = 10 kw = 1.000 kg »      1 kg = 1.000 g »      1 g = 1.000 mg

c. Waktu 

Waktu adalah selang antara dua kejadian atau dua peristiwa. Misalnya, waktu hidup seseorang  dimulai sejak ia dilahirkan hingga meninggal, waktu perjalanan diukur  sejak mulai bergerak  sampai  dengan akhir gerak (berhenti). Waktu dapat  diukur dengan jam tangan  atau stopwatch
Satuan SI untuk waktu adalah detik atau sekon (s). Satu sekon standar (baku) adalah waktu yang dibutuhkan atom Cesium untuk bergetar 9.192.631.770 kali. Berdasarkan jam atom  ini, hasil pengukuran waktu dalam selang waktu 300 tahun tidak akan bergeser lebih dari satu sekon. Untuk peristiwa-peristiwa yang selang terjadinya cukup lama, waktu dinyatakan  dalam  satuan-satuan yang  lebih  besar, misalnya  menit, jam, hari, bulan, tahun, dan abad. 1 hari = 24 jam 1 jam = 60 menit 1 menit = 60 sekon Untuk kejadian-kejadian yang cepat sekali, dapat digunakan satuan milisekon (ms) dan mikrosekon (µs).
Berdasarkan uraian di atas, dapat  disimpulkan bahwa  panjang, massa, dan waktu merupakan  besaran pokok. Berdasarkan hasil Konferensi Umum mengenai Berat dan Ukuran ke-14 tahun 1971, Sistem Internasional disusun mengacu  pada tujuh  besaran  pokok  seperti tercantum pada Tabel 1.2. Empat  besaran  pokok  yang  lain akan dipelajari pada bab-bab berikutnya.

3. Besaran Turunan

Besaran-besaran yang dapat diukur selain 7 (tujuh) besaran pokok pada Tabel 1.2 termasuk besaran turunan. Disebut besaran turunan karena besaran-besaran tersebut dapat diturunkan dari besaran-besaran pokoknya. Misalnya, luas ruang kelasmu. Jika ruang kelasmu berbentuk persegi, maka luasnya merupakan hasil perkalian  panjang dengan lebar. Perhatikan, bahwa panjang dan lebar merupakan besaran  pokok panjang. Dalam SI, panjang diukur dengan satuan meter (m). Luas dalam SI memiliki satuan meter x meter,  atau  meter  persegi  (m2). Contoh besaran turunan yang lainnya adalah volume, konsentrasi larutan, dan laju pertumbuhan.
a. Luas 
Untuk benda  yang berbentuk persegi, luas benda  dapat  ditentukan dengan mengalikan  hasil pengukuran panjang  dengan lebarnya.  Bagaimanakah  cara mengukur  luas benda  yang berbentuk tidak teratur, misalnya luas sehelai daun? 
b. Volume 
Misalnya, kamu mempunyai  dua  wadah,  yakni kaleng besar  dan kaleng  kecil. Jika dipergunakan untuk  menampung air, kaleng besar  pasti  dapat  menampung air lebih  banyak. Hal tersebut terkait dengan besarnya ruangan yang terisi oleh materi, biasanya disebut  volume. Jika volume suatu benda  lebih besar, maka benda  itu dapat menampung materi lebih banyak dibandingkan benda lain yang volumenya lebih kecil. Volume merupakan besaran turunan yang berasal dari besaran pokok panjang. Volume benda padat yang bentuknya teratur,  contohnya  balok,  dapat   ditentukan dengan mengukur terlebih dahulu panjang, lebar, dan tingginya, kemudian mengalikannya. Jika kamu mengukur panjang, lebar, dan tinggi balok  menggunakan satuan sentimeter (cm), maka volume  balok yang diperoleh dalam satuan  sentimeter  kubik (cm3). Jika, panjang, lebar, dan tinggi diukur dalam satuan meter (m), maka volume yang diperoleh satuannya meter kubik (m3). Bagaimana cara menentukan volume suatu zat cair? Zat cair tidak memiliki bentuk yang tetap. Bentuk zat cair selalu mengikuti bentuk  wadahnya.  Oleh karena  itu, jika zat cair dituangkan  ke dalam gelas ukur, seperti ditunjukkan  Gambar 1.26, ruang gelas ukur yang terisi zat cair sama dengan volume zat cair tersebut. Volume zat cair dapat  dibaca pada skala sesuai ketinggian permukaan zat cair di dalam gelas ukur tersebut. Seperti  yang  kamu  lihat pada  Gambar  1.26, hasil pembacaan volume  air dengan gelas ukur di atas memiliki satuan  mL, kependekan dari mililiter. Dalam kehidupan  sehari-hari, volume zat cair biasanya dinyatakan dalam satuan mililiter (mL) atau liter (L). 1 L  = 1 dm3               1 L  = 1.000 mL                1 mL = 1 cm3
c. Konsentrasi Larutan 
Misalnya, kamu membuat larutan gula dengan memasukkan gula ke dalam  air, kemudian  kamu cicipi. Jika kurang manis, kamu dapat  menambahkan gula lagi. Makin banyak gula yang ditambahkan, makin manis rasa larutan itu. Selain rasa manis yang bersifat kualitatif (hasil indra pengecap),  adakah besaran yang dapat digunakan untuk menggambarkan banyaknya gula dan air di dalam larutan ter-sebut? Salah satu besaran  yang dapat digunakan adalah konsentrasi larutan (K). Ada banyak cara untuk merumuskan konsentrasi larutan. Pada contoh larutan tersebut, konsentrasi dapat dirumuskan sebagai massa gula (zat terlarut) dibagi volume air (zat pelarut), yaitu:
K = massa pelarut/volume pelarut

d. Laju Pertumbuhan 
Besaran panjang dan waktu dapat digunakan untuk menentukan pertumbuhan tanaman. Misalkan, kamu  menanam jagung. Pada pengukuran awal, diperoleh tinggi tanaman 20 cm. Dalam waktu 10 hari, tingginya menjadi 60 cm. Kamu dapat menentukan laju pertumbuhan jagung tersebut dengan perhitungan sebagai berikut:
Laju pertumbuhan = pertambahan tinggi/ selang waktu

RANGKUMAN
Penyelidikan ilmiah IPA melibatkan sejumlah proses, antara lain mengamati, membuat inferensi, dan mengomunikasikan. • Pengukuran merupakan  bagian dari pengamatan. • Mengukur adalah membandingkan besaran dengan besaran sejenis  sebagai satuan; menghasilkan ukuran yang terdiri atas nilai dan satuan. Mengukur membutuhkan alat ukur. Alat ukur harus sesuai dengan besaran yang akan diukur. • Besaran yang diukur terdiri atas besaran pokok dan turunan. Satuan besaran pokok didefinisikan, satuan besaran turunan diturunkan dari besaran pokok. Panjang, massa, waktu, kuat arus, suhu, jumlah zat, dan intensitas cahaya termasuk besaran  pokok. Luas, volume, konsentrasi (kepekatan) larutan, serta laju pertumbuhan termasuk  besaran turunan.

DAFTAR PUSTAKA

Allan. Richard. 2004. Senior Biology I. New Zeland: Biozone International Ltd. 
Alton Biggs, Chris Kapicka, & Linda Lundgren. 1995. The Dynamics of Life. New York: Mc Graw-Hill. 
Agus R. dan Rudy S. 2008. GLOBAL WARMING. Edisi Pertama. hiduplebihmulia. wordpress.com Atwater. M.. Baptiste. H.P.. Daniel.  L.. Hackett. J.. Moyer.  R.. Takemoto. C.. Wilson- Mathews.  N. 1995. Propeties of Matter. Teacher’s Resource Matters. New York: Macmillan/McGraw-Hill School Division. 
Beaton, A.E., Mullis,  I.V.S., Martin, M.O., Gonzalez, E.J., Kelly, D.L., and Smith, T.A. (1996). Science Achievement in the Middle School Years: IEA’s Third International Mathematics and Science Study (TIMSS). Chestnut Hill, MA: Boston College. Bigs Altons, Feather Ralph, Rillero Petter, Zike Dinah. 2008. Science level blue. Columbus: Glenco/McGraw-Hill. Biggs, A., Ralph M. Feather Jr., Peter Rillero, Dinah Zike. 2008. Glencoe Science: Science Level Blue. Ohio: Mc-Graw Hill Bigs Altons, Daniel Lucy, Feather Ralph, Ortleb Edward, Rillero Petter, Snyder Susan Leach, Zike Dinah . 2008. Science level green. Columbus: Glenco/ McGraw-Hill. Blaustein. D.. Butler, L.. Matthias. W. & Hixson. B. 1999. Science. An Introduction to the Life. Earth. and Physical Sciences. New York: GLENCOE/McGraw-Hill. Borrero, F., dkk. 2008. Glencoe Science, Earth Science: Geology, the Environment, and the Universe. Ohio: Mc-Graw Hill Champbell Niel A, Urry Lisa A, Cain Michael L, Wasserma Steven A, Minorsky Peter V, Jacson Robert B. 2008. Biologi eighth edition. San Fransisco: Pearson Benjamin Cummings. Champbell Niel A, Urry Lisa A, Cain Michael L, Wasserma Steven A, Minorsky Peter V, Jacson Robert B. 2011. Biologi ninth edition. San Fransisco: Pearson Benjamin Cummings. Chew,  Charles   and  Leong  See Cheng.  2003. Comprehensive  Physics for O level Science. Singapore. Chuen Wee Hong, et al. 2001. Spectrum. Interactive Science for Lower Secondart Levels. Coursebook 1. Singapore: SNP Pan Pacific Publishing.
Kelas VII SMP/MTs Semester 1
Clegg. CJ and  DG Mackean. 2000. Advanced Biology Principles and Applications. London: John Murray (Publishers) Ltd. Cloethingh, S., Jorg Negendank. 2010. New Frontiers in Integrated Solid Earth Sciences. New York: Springer Cooper. Christopher. 2001. Jendela Iptek: Materi. Jakarta: Balai Pustaka. Geographic National. “What is Global Warming?”. Diakses tanggal 10 Oktober 2015. http://environment.nationalgeographic.com/environment/globalwarming/gw-overview/. Global Climate Change.  “A Blanked Around the World”. Diakses tanggal 10 Oktober 2015. http://climate.nasa.gov/causes/. Heyworth.  Rex  M.Dr.  Science Discovery for Lower  Secondary. Vol.2.  Singapore: Pearson Education South Asia Pte Ltd. Heyworth. Rex. M .2000. Explore Your World Science Discovery. Singapore: Pearson Educational Asia Pte Ltd. IEA. 2003.  TIMSS 2003 Released Items: Eighth Grade Science. Chestnut  Hill, MA: Boston College. IEA. 2007.  TIMSS 2007 Released Items: Eighth Grade Science. Chestnut  Hill, MA: Boston College. JGR Briggs. 2004. Chemistry for O level.Pearson Education. Singapore: Asia Pte Ltd. Kistinnah. I. dan  Sri Lestari. E. 2009. Biologi Makhluk Hidup dan Lingkungannya. Jakarta: Pusat Perbukuan Depdiknas. Liem. Tik.L. 2007. Invitations to Science Inquiry. Asyiknya Meneliti Sains. Bandung: Pudak Scientific. Marder. Sylvia. S. 2004. Biology. New York: Mc.Graw-Hill. Martoyo. dkk. 2003. Terampil Menguasai dan Menerapkan Konsep Kimia. Solo: PT. Tiga Serangkai Pustaka Mandiri. McLaughlin. Charles W.  & Thompson. Marilyn. 1997. Physical Science. New York: GLENCOE/McGraw-Hill. Neil . Campbell. Jane B. Reece. Lawrence G. Mitchell: Alih bahasa Rahayu Lestari(et al): Editor Amalia Safitri. Lemeda Simarmata.  Hilarius W.  2002. Biologi. Edisi kelima. Jakarta: Erlangga. Newmark. Ann.2001. Jendela Iptek : Kimia. Jakarta: Balai Pustaka. Pollock. Steve. 2001. Jendela Iptek : Ekologi. Jakarta: Balai  Pustaka. Sadava, David., David M. Hillis, H.C. Heller,  dan May R. Berenbaum. 2011.Life: The Science of Biology, Edisi 9. Sinauer Associates, Inc. USA.

















Tidak ada komentar: